TILINGS at Berkeley Math Circle! (Part 2)

Inspired by Activities of Julia Robinson Math Festival and Nina Cerutti and Leo B. of SFMC.

SPECIAL Tiles - 2ⁱ x 2ⁱ Squares....

Suppose you have an unlimited amount of Special Tiles that are formed with the following dimensions: The length of the sides of each of the Tiles is of the form 2^i , where i is a nonnegative integer. For example, when i = 2 we have a tile of size $2^2x2^2 = 4x4$.

Using what you know about $2^{i} = 2$ multiplied by itself i times, figure out the dimensions of other Tiles (add pictures if that's helpful for you):

i	2^{i}	Tile Size (Square of 2 ⁱ x 2 ⁱ)	Picture of Tile
i = 0	$2^{0} =$		
i = 1			
i = 2			
i = 3			
i = 4			
i = 5			
i = 6			

TILINGS at Berkeley Math Circle! (Part 2)

Inspired by Activities of Julia Robinson Math Festival and Nina Cerutti and Leo B. of SFMC.

When we tile something in 1-D using our special Tiles, we don't care about their height, we only care about using their width of 2ⁱ to tile the length 2ⁱ of the total line segment length.

- 1. Draw a line of length 23.
 - a. What is the greatest amount of Tiles of size 2ⁱ x 2ⁱ can you use to "tile" this line?
 - b. What is the least amount of squares you can use to tile this line?

2. Suppose that you are only allowed to use **ONE** (and only one) of each Tile size.

Which of the following line segments can you tile under the given restrictions? If you find a way to tile the line, indicate the pattern by filling in the number 1 on the tiles that you used to tile that line segment length.

	2 ⁴ x2 ⁴ Tile	2 ³ x 2 ³ Tile	2 ² x2 ² Tile	2 ¹ x2 ¹ Tile	2 ⁰ x2 ⁰ Tile
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					

- a. Is this pattern familiar? Add 0's where you don't use those Tiles.
- b. If you want to tile a line segment of length m, how many square Tiles will you need?